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On a singular point in the Newtonian theory 
of hypersonic flow 

By N. C. FREEMAN 
National Physical Laboratory, Teddington, England* 

(Received 15 October 1959) 

An examination of the Newtonian inviscid theory of hypersonic flow past a sphere 
is made in the neighbourhood of the singular point which occurs at  i3 = 60". 
A uniformly valid theory is developed in this neighbourhood which exhibits the 
limiting detached ' free-layer ' behaviour postulated by Hayes and Lighthill in the 
limit as y -+ 1. A complete solution is obtained which gives details of streamline 
and shock wave shape, pressure distribution, etc. for y - 1 small. 

Reasons are given why the empirical 'modified' Newtonian theory of Lees 
proves to  be a good approximation to experimentally determined pressure 
distributions. 

A novel check to the theory is provided by a simple power-law relation between 
the pressure on the sphere surface and the distance of the shock wave away from 
sphere at the same point, 

1. Introduction 
The Newtonian theory of hypersonic flow has been developed in the past few 

years from the original ideas of Busemann (1933). A review of this work is given 
by Hayes & Probstein (1959), to which the reader is referred for numerous 
references. A solution to the problem of flow of a hypersonic inviscid stream 
past a bluff body is achieved by an expansion procedure in powers of po/ps, 
where p is the density and the suffices 0 and s denote values in the free stream and 
behind the bow shock wave, respectively. The free-stream Mach number is 
generally assumed infinite although this is not essential (e.g. Chester 1956). In  the 
case of a perfect gas, the above ratio is simply (y  - l)/(y + l),  where y is the ratio of 
specific heats, and the expansion is then carried out in powers of e = (y  - l)/(y + 1). 
No rigorous proof has been given that such an expansion will converge and close 
examination of the first few terms would seem to indicate that it is, at best, only 
slowly convergent. However, the solution obtained is the correct solution in the 
limit as E -+ 0. For this reason, one might expect that it would give results which 
bear a resemblance to those for E + 0;  but both numerical computations using the 
complete equations and experimental results would seem to indicate that this is 
not so. In  particular, the pressure predicted on the surface of the body seems to 
bear little relationship to that observed in experiments. Lees (1955) has suggested 
that the correct form for reduction of experimental results on a sphere is given by 

* This research was undertaken while the author was on leave of absence at Princeton 
University. 
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C,/Cpmx = cos2 6, where C, is the pressure coefficient, CPm= its value at the stagna- 
tion point and 6 is the angle measured from the stagnation point. This result 
would seem to indicate that, to obtain a theoretical justification, one need simply 
admit that the pressure is determined by a spherical shock wave with a suitable 
adjustment for the pressure a t  the stagnation point. Although this result has the 
virtue of simplicity, it adds little to our understanding of the theoretical problem. 
Moreover, the theoretical result as suggested by Busemann (1933) would require 
a more complicated expression for the pressure distribution, since the pressure is 
determined not only by the shock-pressure rise, but also by the centrifugal effect 
due to the curvature of the body. The resulting pressure distribution is then made 
up of a pressure rise at the shock wave followed by a pressure drop between the 
shock wave and body. The resulting form of the pressure variation on a sphere in 

Cp/Cpmx = sin 3613 sin 6 the limit E -+ 0 is then 

or, alternatively, CpICpmx = cos2 6 - g sin2 6. 

The final term is the contribntion from the centrifugal pressure gradient 
between shock wave and body. I t  should be noticed that the pressure becomes 
zero for 6 = 60" when the first and second terms above become equal. At this 
point, the assumptions of the Busemann theory are no longer valid and the 
solutions obtained from the theory have a singular behaviour. The author 
believes that it is at  this point that the answer to the discrepancy between theory 
and experiment may be found. The non-uniformity of the convergence of the 
solution as E -+ 0 near this point produces a singular behaviour which influences 
a large part of the flow field. 

In this paper, we shall investigate the nature of the singularity near this point 
and postulate a solution which converges uniformly in this neighbourhood. 
Although it is impossible to state whether this solution is unique, it would seem to 
possess all the characteristics required of it. The problem, as it presents itself, is as 
follows: For 6 < 60", we have a solution as determined by the Newtonian theory 
in which the pressure tends to zero like (+r-6) and the distance of the shock 
wave away from the sphere (measured radially) becomes infinite like (an - 6)-2. 
For 6 > 60°, it was originally suggested by Busemann that the flow 'separates'. 
This idea has led Lighthill (1957) and Hayes & Probstein (1959) to postulate that 
the fluid is flung away from the sphere at  this point and proceeds as a ' free-layer ', 
the pressure on the body surface becoming identically zero. If the assumption 
is then made that the fluid proceeds in a thin layer close to the shock wave, it is 
possible to obtain an analytic expression for the shape of the shock wave. The 
'free-layer' solution of Lighthill (1957) and Hayes & Probstein (1959) has the 
limiting form for the shock shape 

near 6 = in. For the Newtonian solution, the shock layer thickness is propor- 
tional to E ,  while for the free-layer solution it is independent of E .  Thus, we are 
required to find a solution to the problem which behaves like 

g(0 - 4n)3 

and like 
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The type of solution required is shown schematically in figure 1. If we consider 
an expanded system of co-ordinates and an expanded shock shape represented 
by a relationship of the form 

€ a Y [ ( O -  g7r) €/I, (3) 
these conditions require that 

Y(z )+z3  as z + + m  (4) 

and Y(z)+(-z)-Z as z-+ -a. ( 5 )  

003 t 

Free-layer 
solution 
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e 

FIGURE 1. The desired form of solution for the shock shape. 

In  order that the dependence on E be correct, we therefore require 

by equating exponents of E .  Thus 

p =  -3- I I  and a = &. ( 7 )  

€AY((O- &7r)€+). (8) 

The shock shape is, therefore, given in the form 

The limiting forms of the solution for Y are given by (4) and (5). It will be shown 
below that Y satisfies a non-linear second-order differential equation. It does not 
seem possible to obtain an analytic expression for Y .  However, the equation can 
be integrated numerically and then we see from (8) that the solution is known for 
all c. By the type of argument used above, it is possible to deduce the required 
behaviour of the shock shape with E .  It is possible to determine much more from 
the complete theory. The behaviour of the whole flow field can be determined 
in the neighbourhood of the singular point. The procedure used is to expand 
the variables, both dependent and independent, in series with coefficients 
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dependent upon powers of E ,  in a similar fashion to that suggested by Lighthill 
(1949). In  fact, we will only consider the first term in this expansion. This we will 
do mainly to reduce the complexity of the problem. It should also be necessary to 
examine the expansions at other points in the flow field if the higher order terms 
were required. 

Most of the results obtained below were determined by the author in a previous 
paper (1958). The method used, however, relied primarily on arguments on the 
physical mechanism of the transition from a Newtonian theory to a detached 
free-layer solution. In  that paper, it was argued that the most important effect to 
be taken into account at the singular point is that of curvature of streamlines 
relative to the body. This result is confirmed in the present paper. The fact that 
this is so is perhaps the most encouraging result of the work. It will be realized 
that the result of Lees (1955) already indicates that this might be the case. For if 
the pressure drop due to body curvature is to be nullified, some mechanism is 
required which will give an increased surface pressure. The most obvious one is 
that the streamline curvature relative to the body should become important. In  
fact, the theory shows that this curvature is of the same order as the body curva- 
ture at  the singular point. As, in practice, the singular point behaviour influences 
the whole flow field (due to the fact that E is not mathematically very small), the 
experimental predictions become more understandable. 

The most disconcerting feature of the theory is, however, already obvious from 
the form of (8). It will be seen that near the singular point the dependence is on 
e'i rather than on E .  A more detailed study of the flow field shows that this is, 
indeed, the case. In  practice, & is never small enough for the theory to hold. In  
other words, the transition from the Newtonian to the free-layer solution depends 
on & being small and the free-layer solution will only be achieved when this 
condition is satisfied. 

The theory has been developed below for the case of a sphere; but the theory is 
not restricted only to the sphere. Similar results could be obtained for any two- 
dimensional or axially symmetric body. The dependence on E would, however, be 
different although it would seem straightforward by arguments similar to those 
used above to determine the correct form. 

More generally, the approach to the problem is that used by the author (1956) 
in his treatment of Newtonian theory. The shock layer is considered to be a narrow 
region in which rates of changes across the layer are much larger than those along 
it. By consideration of the orders of magnitude of the variables, it  is then 
possible to simplify the equations of motion considerably. In  the region near the 
singular point, however, the orders of magnitude of the variables change and we 
are required to modify the equations accordingly. 

2. The equations of motion 
By considering a particular body shape (the sphere) we are able to choose a co- 

ordinate system immediately simplifying the analysis considerably. We shall 
choose a spherical polar system of co-ordinates with r and 0 measured from the 
centre of the sphere and the forward stagnation point, respectively, T = a is the 
surface of the sphere. 
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The equations of continuity, momentum and energy can then be written in the 

(2.1) 
a a 
ar ae 

form 
- (pur2 sin 8)  + - (pvr sin 8 )  = 0, 

(2.2) 

(2.3) 

(2.4) 

where u, v are the velocities in the r and 8 directions; p is the density; p the pres- 
sure; and i the enthalpy. If we assume a perfect gas with constant specific heats 
then 

. Y P  % = - -  

Y-1P '  
(2.5) 

Introduction of the Stokes' stream function, $, to satisfy equation (2.1), then 
gives the following set of equations : 

.- - a+ a' - pvr sin 8, - = -pur2 sin 0, 
ar ao 

au ap 
--v+-rZsinO = 0, ae a$ 

1 aP aP v-+uv+- ---pur2sin8 ao av P ( ae 

(2.6) 

(2.7) 

where 6' and $ are taken as the independent variables in equations (2.7) to (2.9). 
The Newtonian theory may then be deduced by considering a new system of 

variables 
r v  p ' = , P ,  PI=--- P 2, =- urn? "=&] 

P m  u: ' 

P*UmU2'  U& 

(2.10) 
P m  

r - u  
r =- , ~ = e .  $ 

$1  = ~ 

All the dashed variables are then assumed of order unity. The equations (2.7) 
to (2.9) then reduce to 

2, aV ai 
a$ a2sin8' ae 
_ -  ap -~ % = 0  and - = 0  (3.11) 

which together with (2.6) then give the Newtonian approximation. The shock 
layer is assumed thin and, hence, approximately spherical. Equations (2.11) can 
then be integrated to give 

S Fluid Mech. 8 
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wheres denotesvaluesat the shock wave. Using the strong shock wave approxima- 
tions we have 

p = sin __-- 38 + sin3 -JP,U$, 6 ( 3sin8 

where @ = $pm U, a2 sin2 5. 
Equation (2.6) then gives 

(2.12) 

(2.13) 

This is then the equation of the streamlines, E = const., and E = 8 is the equation 
of the shock wave. 

Order of magnitude 

Newtonian 

1 

1 
€-I 

1 

1 

c: 

€ 

Near 
singular 
point 

& 
& 
& 
F, - -1% 
e 2 i  
d 1 -  

- 
3 

hi-i 

TABLE 1 

From equation (2.13), it  is clear that at 8 = in, we have some kind of singular 
behaviour. In fact, we have 

r - a  271 
a 3% 

- N -  (Q7I- 8)+, (2.14) 

provided that lim [sin [/ (sin 38)$] +- co. 
o++n 

Similarly, the pressure on the sphere surface (( = 0 )  tends to zero like 

(2/J3) (in - 8).  (2.15) 

The breakdown of the theory is thus associated with the vanishingly small 
pressure a t  the sphere surface. When this occurs, it is no longer possible to assume 
orders of magnitude for the variables as in equation (2.10). Is it possible, though, 
to determine orders of magnitude for the variables in the neighbourhood of the 
singular point and, hence, obtain a uniformly valid solution in this region? In Q 1, 
an argument was put forward which gives a uniformly valid form near 8 = 60". 
This result indicates that near this point, the shock layer has a thickness which is 
order am'< and the rates of change along the shock layer are order a&. A close 
examination of the equations (2.1) to (2.4) then leads to the orders of magnitude 
shown in table 1, where they are also compared with the original orders of magni- 
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tude of the Newtonian theory. We therefore consider a new system of variables 
such that 

p = dip ,  UZ, P(z, c), 
u = d i U ,  U(Z ,  c), I 

i li = drum V(Z ,  c), 
p = s-?ip, Q(z, I s ) ,  
@ = 8u2pm u, &<2, 

r -u  = d h R ( z ,  <), 

where e-+n =&fix and sin5 = I&[. 

Substituting in equations (2.6) to (2.8), we obtain 

(2.16) 

(2.17) 

(2.18) 

where terms of order & have been neglected in the first two equations. These 
equations therefore remain essentially the same as for the 'Newtonian' theory. 
At first sight, it would appear that equation (2.9) does also, since this becomes 

(2.19) 

However, the shock layer in the expanded co-ordinate system now extends 
from 6 = 0 to g N e* and, hence, it is possible that the terms in di can contribute. 

Integrating equation (2.19), we obtain 

(2.20) 

where S U ~ X  s denotes values at the shock wave. 
Now on the shock wave V = Umcosq5, where CD is the angle the shock 

wave makes with the free stream. Now $ = &r-O+O(aBi) and, hence, 
V = U,(sin0+0(&)} on the shock wave. Also, since the value of @ on the 
shock wave is related only to the slope of the shock wave, we have 0 = 5 + O(& 
at the shock wave. Hence, using (2.16) and (2.18), we obtain 

Similarly 

p = &i'i - - J3 z + O(&i). 
2 

and thus 

Again 5 = = &sin0 

(2.21) 

(2.22) 

on the shock wave. 

(2.23) 

8-2 
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Substituting in equation (2 .20) ,  we have 

Kow, from equation (2.18), we have 

+ o(&). 
2 

and, hence, 

(2.24) 

(2 .25)  

(2.26) 

Thus, the pressure is modified from the Newtonian value which comprises the 
first two terms by a term which depends on the curvature of the streamlines at 
6 = 00. In  the expanded system of co-ordinates, = 00 corresponds to the shock 
wave. 

The distance of the streamlines away from the body is obtained from equa- 

(2.27) 
tions (2.18) as 2 R = - J C d c  

43  O Z '  

we obtain 

If we let R, = R(z, cc), then 

The equation of the shock wave is then given by 

(2.28) 

(2.29) 

(2.30) 
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Near the sphere itself, where 5 is still small, the equations of the streamlines 

dS 

- ( - 2 )  + - __- + __ 5 

are given by 9 

R = f 3 [ '  2 1d2R, 2 2 '  

J o  4 3  4 dzZ 3 4 3  

(2.31) 

where R, is calculated from equation (2.30). 

on the surface of the sphere is 
The pressure is obtained from equation (2 .26);  and, in particular, the pressure 

I 

2 1 d2R, p = - ( - z )+ - - -  
4 a x 2  * 4 3  

(2.32) 

We have thus reduced the problem to solving equation (2.30). It does not seem 
possible to do this analytically; but since equation (2.30) only need be solved to 
give a complete solution, the numerical evaluation can be done once and for all. 
The boundary condition on equation (2.30) is given at x = -a, where R, must 
behave like the original Newtonian solution. The details of the types of solution 
of equation (2.30) and the method of solution are given in the Appendix. 

In the original co-ordinate system, the shock wave shape is expressible in the 
form 

r - a  -- 
a 

- ei% R , [ d i ( 8  - in)], 

where R, is the solution of (2.30).  
The surface pressure is given in the form 

p = pm &Pb[E*(O - in)], 

where 
2 1 d2R, Pb(Z) = - ( -z)+---  

213 4 dz2 ' 
and the streamlines by 

where 

and 

(2.33) 

(2.34) 

(2.35) 

We see, therefore, that in the limit as e -+ 0, the shock wave approaches the 
in. The solution limiting forms of the solution at  -I co depending on whether 0 

to equation (2.30) is such that 

R,N (-z)--: a8 z +  -a 
z3 as z-+ +a. 

In  the limit of e + 0, we have 

r - a  
- N e(&n-#)-Z for 8 < in 

r - a  __ N (8-&n)3 for 0 > gn. 
a 

a 

and 
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We can also investigate the behaviour of the streamlines as 6 -+ 0. For [ = K 

the streamlines very close to the shock wave are identical with it. Howeve1 
when [ is not large the same limiting behaviour occurs when 

5.0 

4.0 

I 
r" - 2.0 

(2.36 

i: 
0 
-5 -4 -3 -2 -1 0 1 2 

(0 - in) 
FIGURE 2. The shock shape ( e i s  sin f ;  = 00) and the streamlines (di- sin f ;  = const.) 

in the neighbourhood of the singular point (0 = 60'). 

l l , ,  , ; > \ ! ,  I 
0 

- 5  -4 -3 -2 -1 0 1 2 3 4  
(0 - in) E-R 

FIGURE 3. Pressure variation a t  the surface of the sphere in the neighbourhood 
of the singular point 0 = 60'. 
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For 6 < in, this occurs when sin5 
-P a 7  (+n-@)t 

and for 6 > +n7 when s b ( 6  - in)% sin 5 --f co. 
Hence, for 6 < Qn, the streamlines are distributed independently of E ,  whereas 

for 8 > in, the streamlines approach the shock wave at a rate proportional to 
€4 as E tends to zero. Thus, we see from the equation for the shock wave shape 
that the region of transition from the Newtonian theory to the free-layer solution 
is of order €A, but after separation, the free-layer solution is achieved compara- 
tively rapidly like €4, The pressure along the body surface falls rapidly to zero 
like &(6 - +n)-P. 

The solution to equation (2.30) was calculated using the method outlined in the 
Appendix. The results are plotted in figure 2, together with the equations of the 
streamlines computed from equation (2.35). The rapidity of the transition to the 
free-layer solution is immediately evident although the scale of phenomena is 
proportional to &. The surface pressure is computed from equation (2.34) and is 
plotted in figure 3. In  each case, the expanded co-ordinates are used to give 
universal curves for all B .  

3. Physical implications of the theory 
As mentioned in $ 1 ,  it  has been difficult in the past to try to compare directly 

the experimental and theoretical results, since the discrepancy between the two 
was inconsistent with the original Newtonian theory. It is clear, however, from 
the theory of $ 2  that the modification necessary to correct the pressure distribu- 
tion given by Newtonian theory is to take into account the curvature of the 
streamlines relative to the body. To a first approximation, this curvature may be 
taken equal to the curvature of the shock wave. This prediction may be checked 
in a rather interesting manner, for using (2.32) and (2.30) we see that 

The pressure on the surface of the sphere pb is, therefore, related to the distance of 
the shock from the sphere by an inverse three-halves power law. This result is 
plotted in figure 4 for two sets of experimental results: the first in air at  M, = 5.8, 
due to Oliver (1956), and the second in helium at M, = 14.0, due to Vas, Bogdonoff 
& Hammitt (1!158). 

Direct comparison of the results with experiment is difficult, however, since E is 
never small enough physically for the theory to hold. The transition region, 
discussed in the previous section, in practice spans the region from stagnation 
point to the shoulder of the sphere. Thus, the theory shows that the singular 
behaviour of the Newtonian result will tend in practice to influence the whole 
flow field. Comparison of the pressure with experimental results shows that the 
theoretical predictions are considerably larger than the experimental values for 
E = and a. This is due to the singular behaviour influencing the whole region 
including the stagnation region. Since the pressure is in the first approximation 
alinear function away from the singular point (as shown by the first term of (2.32)), 
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this would tend to over-emphasize the pressure in the stagnation region, where 
the Newtonian theory shows a nearly constant value. It should be noted, how- 
ever, that equation (2.30) cannot be used right up to the stagnation point. For, it 
is clear that the factor multiplying d2Rldz2 in (2.30) is the momentum flow in the 
shock layer at  6 = 60". It would be more correct, therefore, to reduce this as the 

l.O r' Nope  , \\ 

I I 1  

U.1 0.2 030.405 1.0 1 5  2 0  
( T * - - a ) P  

FIQURE 4. Experimental results of Oliver (1956) and Vas et aE. (1958) 
plotted for comparison with equation (3.1). 

stagnation point is approached to the correct value as given by the Newtonian 
theory at that value of8. Integration of an equation using this correction and also 
the correct Newtonian pressure distribution shows that a distribution much 
closer to experiment can be obtained. In  fact, for e equal to + or t a further 
complication arises because the singular behaviour has influenced this linear 
variation even a t  the stagnation point. This effect is rather disconcerting, since 
the result obtained by using a much cruder equation for the pressure based on 
physical reasoning similar to the above gave a much closer agreement with experi- 
ment (cf. Freeman 1968). Of course, it is now clear that, mathematically, these 
additional refinements are unjustified within the uniformly valid approximation. 

4. Conclusion 
The theory outlined above shows the nature of the solution to the hypersonic 

inviscid flow past a sphere in the neighbourhood of the singular point obtained 
when 6 --f 0 for free-stream Mach number infinite. The result also indicates that 
the curvature of the streamlines relative to the body is the most important factor 
in this region. Although in practice e is never so small that this part of the flow 
field is independent of the other parts, the limiting form of the solution is of 
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interest in showing how the transition from the initially attached Newtonian 
flow to the detached free-layer solution would occur. 

It is clear from the results that the free-layer solution is reached fairly rapidly 
after the transition region (figure 2) .  

It would seem possible to develop similar theories for other bluff bodies, both 
two-dimensional and axially symmetric. The method would be essentially the 
same. A general formulation of the problem for any bluff body would seem to be 
rather complicated, however. 

Perhaps a more interesting development from the above theory could be 
obtained by considering other Newtonian solutions and analyzing the solution in 
the neighbourhood of discontinuities of slope, curvature, etc. In  this way, it 
would seem possible to develop a uniformly valid solution in the neighbourhood 
of such points. 

It seems that the procedure developed in this paper is an extremely powerful 
one in obtaining solutions to the hypersonic bluff body problem. If one considers 
that the result obtained by the author in his previous paper (1956) to be 
the fundamental Newtonian solution, then the theory of the type developed 
above may be considered as the solution to a particular problem in a region where 
that solution does not have uniform validity. In  a similar way, it is possible to 
obtain other Newtonian solutions by simply requiring that in other limiting 
processes a uniformly valid solution is required. The author has succeeded in 
obtaining the solution for a blunt body originally derived by Hayes (see Hayes & 
Probstein 1959, Chap. 5 )  and Serbin (1956). 

The author would like to thank Prof. W. D. Hayes and Dr S. H. Lam of 
Princeton University for many valuable discussions on this subject. 

The work was carried out at the Gas Dynamics Laboratory, Princeton Univer- 
sity and is sponsored by the Office of Scientific Research, Air Research and De- 
velopment Command, Fluid Mechanics Division, under Contract AF 49( 638)-465. 

Solution to equation (2.30) Appendix 

We require a solution to the equation 

subject to the boundary condition that at  z = -m the solution is obtained by 
neglecting the d2Rl/dz2 term. 

8.". E. 1, 
1 I T 1  1 

(A21 3A2-E 
x=-- z y = W R  Ti'i 1 A change of variables 

and 

reduces the equation to the form 
d2Y 1 

a x 2  Y' 
- = X + T .  

It does not seem possible to get an analytic solution to (A3) and hence we must 
resort to numerical methods. The behaviour of the equation (A 3) near the point 
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x = -co is somewhat complicated as can be seen from perturbing the known 
asymptotic form. For, putting 

y = (-x)-%+y,, 

we obtain %+*( ax= -x)dy  1 -  - -I$( - X)* (A 4) 

neglecting the higher order terms. We see that for x near - co the above equation 
has complementary functions of the form 

which tend to zero in an oscillatory manner with x but whose derivatives become 
infinite. The particular integral of (A4) is the solution we require. It is clear, 
therefore, that we must use some procedure to get away from x = - co before we 
use the normal integration procedure. We do this by using the asymptotic 
solution of (A3) which is m 

y = (-x)-$ c bf i ( -x) -? j / ,  (A 6) 
%=o 

where b,, b,, b,, . . . are given in Table 2 .  

n ha 
- _.___ .. 

1.0 
0.740741 

12.0988 
- 602.554 

60,999.4 

TABLE 2 

This solution is only slowly convergent but it was found possible to use the above 
expansion up to x = -6. The integration was then continued using the usual 
integration procedure up to x = + 6, taking intervals of 0.25. 

An asymptotic expansion can also be obtained for large x and fitted to the 
solution obtained by numerical integration. 
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